Relative annihilators in semilattices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Relative Pseudocomplements in Semilattices

Weak relative pseudocomplementation on a meet semilattice S is a partial operation ∗ which associates with every pair (x, y) of elements, where x ≥ y, an element z (the weak pseudocomplement of x relative to y) which is the greatest among elements u such that y = u ∧ x. The element z coincides with the pseudocomplement of x in the upper section [y) and, if S is modular, with the pseudocomplemen...

متن کامل

Relative Annihilators in Almost Distributive Lattices

Some properties of relative annihilators are studied in Almost Distributive Lattices (ADLs). Prime ideal conditions on ADLs are investigated in connection with the relative annihilators. The concept of Boolean congruences is introduced and characterized in terms of relative annihilators. Copyright c © 2011 Yang’s Scientific Research Institute, LLC. All rights reserved.

متن کامل

Weak Relative Pseudocomplementation on Semilattices

1. Introduction. A meet semilattice is said to be weakly relatively pseudocomplemented, or just wr-pseudocomplemented, if, for every element x and every y ≤ x, all the maxima

متن کامل

Jānis C̄ırulis WEAK RELATIVE PSEUDOCOMPLEMENTS IN SEMILATTICES

Weak relative pseudocomplementation on a meet semilattice S is a partial operation ∗ which associates with every pair (x, y) of elements, where x ≥ y, an element z (the weak pseudocomplement of x relative to y) which is the greatest among elements u such that y = u ∧ x. The element z coincides with the pseudocomplement of x in the upper section [y) and, if S is modular, with the pseudocomplemen...

متن کامل

Relative annihilators and relative commutants in non-selfadjoint operator algebras

We extend von Neumann’s Double Commutant Theorem to the setting of nonselfadjoint operator algebras A, while restricting the notion of commutants of a subset S of A to those operators in A which commute with every operator in S. If A is a completely distributive commutative subspace lattice algebra acting on a Hilbert space H, we obtain an alternate characterization (to those of Erdos–Power and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1973

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700043094